
DOCUMENT RESUME

ED 053 162 TM 000 679

AUTHOR Urry, Vern W.
TITLE Individualized Testing by Bayesian Estimation.
INSTITUTION Washington Univ., Seattle. Bureau of Testing.
PUB DATE Apr 71
NOTE 31p.

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

EDRS Price MF-$0.65 HC-$3.29
Achievement Tests, *Bayesian Statistics, *Computer
Programs, *Educational Testing, Factor Analysis,
Factor Structure, Guessing (Tests), *Mathematical
Models, Measurement Techniques, Research
Methodology, Simulation, Statistical Analysis,
Statistical Data, *Test Construction, Testing,
Validity
*Tailored Testing

ABSTRACT
Bayesian estimation procedures are summarized and

numerically illustrated by means of simulation methods. Procedures of
data generation for simulation purposes are also delineated and
computationally demonstrated. The logistic model basic to the
Bayesian estimation procedures is shown to be explicit with respect
to the probability distribution from fAich one is sampling. This
featIlre allows for an assessment or evaluation of its capabilities
without empirical data. The fit of the model to empirical data is
dis(%:ussed as an issue independent of considerations as to model
capabilities. Three item banks are used to simulate Bayesian
estimation procedures. Two are idealized--though reasonably
possible--examples; whereas, the third consists of items specified
according to other parameter estimates reported. Results indicate
teat with test validity held constant, Bayesian tailored testing of
Ole Verbal Scholastic Aptitude Test (VSAT) could result in a savings
of 65% of testing time for the average examinee. However, more
savings in testing time is seen as possible through the use of item
banks developed specifically for the purpose of tailored testing. The
present investigation did not utilize prior information. Further
assessments of model capabilities should explore such usage. While
present results appear favorable, the full potentialities of the
model have yet to be assessed. (Author/AE)



U.S. DEPARTMENT OF HEALTH, EDUCATION
& WELFARE

OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVED FROM THE PERSON OR
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES-
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

IANsw

riter4



Bureau of Testing

University of Washington

April 1971

Individualized Testing by Bayesian Estimation

Vern W. Urry

Bayesian estimation procedures derived by Owen (1969) were
summarized and numerically illustrated by means of simulation
methods. Procedures of data generation for simulation purposes were
also delineated and computationally demonstrated.

The logistic model basic to the Bayesian estimation procedures
was shown to be explicit with respect to the probability distribution
from which one is sampling. This feature of the model allows for an
assessment or evaluation of its capabilities sans empirical data.
The fit of the model to empirical data was discussed as an issue inde-
pendent of considerations as to model capabilities.

Three item banks were used to simulate Bayesian estimation
procedures. Two of the banks were idealized--though reasonably
possible--examples; whereas, the third consisted of items specified
according to parameter estimates reported by Lord (1968) for the VSAT.

With test validity held constant, Bayesian tailored testing of
the VSAT could result in a savings of 65% of testing time for the
average examinee. However, more savings in testing time was viewed
as possible through the use of item banks developed specifically for
the purpose of tailored testing.

The present investigation did not utilize prior information.
Further assessments of model capabilities should explore such usage.
While present results appear favorable, the full potentialities of
the model have yet to be assessed.

Bureau of Testing Project: 0171-177
fl



Individualized Testing by Bayesian Estimation

Owen (1969) has derived Bayesian procedures for the tailoring of tests

for the cases where chance success on the items is and is not effective.

Both cases will be discussed in the current report along with illustrative

data.. Computer programs which simulate the process are described and

included in the appendix for the separate cases. The programs can be modi-

fied for "live" tailored testing applications.

Under both cases, the procedures: (1) identify the most appropriate

item for presentation; (2) score the response to that item or, synonomously,

(re-) estimate the ability parameter for the individual; and (3) calculate

the standard error of the new estimate of ability. The process can be repeated

until all or a specified number of items have been used or an allowable value

of the standard error of estimate has been attained.

In the following, we assume that the item parameters are either known

or have been previously estimated. By way of review, the item parameters of

the logistic model are item discriminatory power (ai); item difficulty (bi);

and probability of chance success on the item (ci). Methods of estimating

the item parameters have been discussed by Birnbaum (1968).

Method

In both cases, one calculates 0
(ID),

the estimate of ability, and

a/ \, the variance of the estimate, sequentially. The subscript p indexes

the number of items that have been presented to an individual during an evaula-

tion sequence. For example, if one lacks prior information on the individual

being examined, 6(0) and a
(0)

would be set at values of 0 and 1, respec-

tively. Initial values of this nature have the basic rationale that in the
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absence of individual information, the mean, 0, is the most probable estimate

of ability, 0(0) , while the standard error, a
(0)'

coincides with the

standard deviation. More concisely expressed, the prior distribution of

ability, 0 , is assumed to be N(0,1).

Case I: Chance success on the items is not effective

In order to determine the item most appropriate for immediate

presentation, we calculate ai for all (unused) items. The formula is

(1)

where

(2)

and

(3)

,,
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a
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More familiarly, we have

(4)

where

( 5 )
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erf D. = 20(4-2Di) -1

Ni2D.
2

gin( .[2D.) f exp ] dt
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is the well tabled normal probability function. For future reference and

convenience, we will designate the following:

(6)
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i
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(10)
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1
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Now the s- tbscript, i, of the smallest
1

given by equations (1)

identifies the optimal item for presentation. Upon presentation of the
.th

item, one of two outcomes is possible. The individual will get the item right,

or he will get the item wrong. Given that he responded correctly, his new

ability estimate is given by

(10)
(p+1)

(right) =
(P)

+1.2 exp(-4
1

s.u171

The standard error of the estimate, conditional..upon a%correct_response, is

given by the square :root of

a(p+1)

.

(right) = a
(P)

(1
2

t.[exp ki)2.)ui .]

[
1.1).exp (D1

1
)u.])

Should the individual miss the item, his new ability estimate is given by

(12) (p+1)(11T°ng) = g(p) eXP(44.)SiV71
1

The standard error of the new estimate of ability, conditional upon an

incorrect response, is given by the square root of

(13) a(P+1)(wrong) = Q(
P)

{1 - 2 t. [exp (D2)v.] -2

7;

[ 1 + D1
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At this point, the number of item presentations (p) is updated by

one since the sequential use of equations (1) and equations (10) and (11) or

equations (12) and (13) defines an item presentation cycle. As a consequence,

^2 ^2
the current 6(p11) and a(p1.1) become the e(p) and a(p) when a new

item presentation cycle is initiated.. When equations (1) are recalculated

for the (n - p) unused items, the 1.-- item is again identified by the

mallestu..Again, depending on the propriety of the individual's response

either equations (10) and (11) or equations (12) and (13) are used. The

cycles may be repeated until a termination criterion has been attained.

Case II: Chance success on the items i3 effective

Equations analogous or even identical to those for Case I exist for the

present case; however, due to the effectiveness of guessing, some equations

increase in complexity. Let us designate

(1 - c.)u.
(14) w. = (c.

1]

2

for further reference. Now one begins by calculating

u. , u.

(15) Pi = [(1 - c )t ] lw - 1)exp (2D'2)[1 + ci(1 - 1)]
2 2

-1

for all (unused) items where equations (2) through (9) still obtain. Again

the subscript, i, of the smallest pi identifies the optimal item for

immediate presentation.

th
One of two outcomes will occur when the i-- item is presented. If

the individual responds corr3ctly, his new estimate of ability is given by

( 1)
(right) = (1 ci) expok-D.)s.w.(16)

, 2 -1

(P) 1 i
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The standard error of the new estimate, conditional upon the appropriate

response, is given by the square root of

(1 - ci)
\ 2\

(17) a(p+1)(rigt) = 0.(p) 1 -

I
(wiui)

-1
ti exp(-2Di)

n

2
ci

exp(D.)u.] - w. )

.th
Should the individual respond incorrectly to the 1-- item, equations (12)

and (13) are still appropriate; however, for convenience the equations are

repeated. His new estimate of ability is provided by

(18) g(p+1)(wrong) = e(p)
2

exp(-Di2 )sivi 1

The standard error of th.. nc:r ability estimate, given a wrong answer, is

obtained from the square root of

2 D2(19)
a (P+

(lwrong) = a
(P)

(1 - ti[ex p (Nf. )v . ]-2

n

+ Ali exp (D )vi ])

The sequential process of item presentation cycles delineated above is

also appropriate here. The optimal item for immediate presentation from

among the (n p) unused items is determined for each cycle by the subscript

th
ionthesmallest.

Pl
given by equations (15). The item is responded

to by the individual and the nature of his response determines whether

equations (16) and (17) or (18) and (19) are to be used in estimating ability

and the variance of the estimate of ability. As indicated above, termination

criteria may be specified on the basis of a maximum value for p and a

maximum allowable value for a
(p)
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^0
Under both cases, the estimates 6(pi1) and a

l)
are the first

(pf

and second moments of the posterior distribution. When these same estimates

are used to determine the next item to be presented their status changes to

^,

P)
and a the first and second moments of the prior distribution.

g(P) (

In Bayesian estimation procedures, the posterior distribution becomes the

prior distribution when a new item presentation cycle is initiated.

Generaticn of response vectors for simulated individualized testing

Given any set of n items having known item parameters, the probability

distribution, conditional upon ability, e, can be determined for all pos-

sible response patterns or vectors. What this means is that if one has a

random sample of values of e, one can then sample response vectors and

score these by the procedural manner he chooses. Later we will discuss how

one can evaluate the given procedure. In this instance, we choose to eval-

uate Bayesian estimation procedures, but the simulation technique has wic'er

applicability. A case in point would be an evaluation of flexilevel testing

(Lord, 1971).

For purposes of concrete illustration, we will take a 4-item example.

Given four items, there are 2
4
or 16 possible patterns or response vectors,

v . These are:

v. [o o o o]

v2 . [0 0 0 1]

v3 = [o o 1 0]

v4 [0 0 1 1]

v
5

[o 1 0 o]

v6 = [o 1 o 1]

v
7

= [o 1 1 o]

v8 = [o 1 1 1]

v
9

[1 o o o]

v
10

= [1 0 0 11

8
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v
11

= [1 o 1 0]

v
12

= [1 0 1 1]

v13= [1 1 0 01_

v14 = [1 1 0 1]

v
15

= [1 1 1 o]

v
16

[1 1 1 1]

Now response vector v11 indicates that items 1, 2, 3, and 4 were responded

to correctly, incorrectly, correctly and incorrectly, respectively. If,

further, the item parameters for the items of illustration are:

a.
1

b. c.
1

Item 1 1.6 1.1 .C6

Item 2 2.0 1,1 .05

Item 3 1.2 1.1 .05

Item 4 1.0 1.1 .13

and, say, the value of e for which one is evaluating the probability

distribution of the v
k

is 1.0, we would proceed as follows. The probability

of a correct response to an item, given e, is provided by the model as

(20) pi(e) = ci + (1 - c.)
1

1 1 + exp[-Dai(e - hi)i

r.
where D is the constant 1.7. The probability of missing an item is merely

(21) Qi(e) = 1 - Pi(e)

As a consequence, the following probabilities obtain:

P (e = 1.0) = .47

(11(e = 1.0) = .53

P
2
(e = 1.0) = .45

Q2(e = 1.0) = .55

P
3
(e = = .48

Q
3
(e = 1.0) = .52

P
4
(e = 1.0) = .53

Q
4
(e = 1.0) = .47

9
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Since ability is fixed, the probabilities are assumed independent across

items. This assumption is more familiarly known as that of local independence.

It merely states that if several variables covary with one another due to a

distinct variable, holding the latter constant results in independence among

the several. We may now compute the joint probability of the independent

events indicated by each vk for e equal to 1.0. This is merely the

product of the probabilities of the events recorded by the zeros and ones

in each vk . For convenience, the probabilities conditional upon e are

calculated in Table 1. For example, response vector v11 recorded that:

Item 1 was correct with probability equal to P1(e = 1.0), or .47; Item 2

was incorrect with probability equal to Q2(e = 1.0), or .55; Item 3 was

correct with probability equal to P5(19 = 1.0), or .48; and Item 4 was

incorrect with probability equal to %(e = 1.0) or .47. The probability of

the joint events conditional upon e = 1.0 is, then, (.47)(.55)(48)(47)

or .0583. In Table 1, the cumulative conditional probabilities are also

given. Handily, as well as properly, these sum to unity. As a consequence,

one can obtain a randomly selected response vector for a given value of e

by obtaining a random number from a distribution which is uniform on the

interval from zero to unity and comparing this to the attendant probability

intervals. For the sake of clarification, let us say that a random number

thusly selected was .6254. Since the value occurs in the probability inter-

val of .5933 to .6644 corresponding to response vector v10 , the said

vector would have been randomly selected in proportion to its probable

occurrence given the stated conditions. Clearly, the nature of the sampling

remains unchanged even with an arbitrary ordering of the response vectors.
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Table 1

Conditional Probabilities, Cumulative Conditional Probabilities,

and Probability Intervals for Possible Response Vectors

Conditional Probabilities

Prob(vi le . 1.0) = (.53)(.55)(.52)(J.17) = .0712

Cumulative

Conditional

Probabilities

.0712

Probability

Intervals

.0000 to .0712

Prob(v2 le = 1.0) = (.53)(.55)(.52)(.53) = .0803 .1515 .0713 to .1515

Prob(v3 le = 1.0) . (.53)(55)(48)(.47) = .0658 .2173 .1516 to .2173

Prob(v4 le = 1.0) = (.53)(.55)(.48)(.53) = .0742 .2915 .2174 to .2915

Prob(v5 le . 1.0) = (.53)(45)(52)(47) = .0583 .3498 .2916 to .3498

Prob(v6 le = 1.0) = (.53)(45)(52)(53) = .0657 .4155 .3499 to .4155

Prob(v7 le = 1.0) = (53)(-45)(.48)(.47) = .0538 .4693 .4156 to .4693

Prob(v8 le = 1.0) . (.53)(45)(48)(53) = .0607 .5300 .4694 to .5300

Prob(v9 le = 1.0) = (.47)(55)(52)(47) . .0632 .5932 .5301 to .5932

Prob(v101e = 1.0) = (.47)(55)(52)(53) = .0712 .6644 .5933 to .6644

Prob(ville = 1.0) = f \f \( PO( )k.47/k.55/\.4.,/k.47, = .0583 .7227 .6645 to .7227

Prob(vi2le = 1.0) = f h I(.55)( -4A)( .53) = .0658 .7885 .7228 to .7885

Prob(v1310 = 1.0) = (.47)(.45)(.52)(.47) = .0517 .8402 .7836 to .8402

Prob(v14le = 1.0) = (.47)(45)(52)(53) = .0583 .8985 .8403 to .8985

Prob(v151e = 1.0) = (.47)(.45)(-48)(-47) = .0477 .9462 .8986 to .9462

Prob(vide = 1.0) . (.47)(.45)(.48)(.53) = .0538 1.0000 .9463 to 1.0000
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The principles developed above generalize directly to situations where

there are a large number of items; however, it is then usually more conven-

ient to work with repeated samplings from subsets of items with e fixed.

Notice that with 100 items the calculation of 21
00

conditional probabili-

ties for fixed e would present severe computational problems.

A computer program that accomplishes the sampling of response vectors

has been presented elsewhere (Urry, 1970). flore specifically, the program

samples response vectors for a random sample from the assumed distribution

of e, N(0,1). Obviously, gaussian random numbers will fulfill the imposed

sampling requirements with respect to underlying ability.

Notice that only a subset of items from any response vector of length

n are actually used by the Bayesian procedures to obtain an estimate of

ability, e(p) . The item sequence, as noted above, is determined by prior

itlformation and/or responses as well as the item parameters. Given the model,

the temporailty of responses, as far as the n-length response vector is con-
N

cerned, is inconsequential. In other words, one may (re-) estimate ability

on any sequence or sub t of items from the response vector as determined by

a procedure while ignoring the,available responses to the remaining items.

The simulated or after-the-fact tatIqring of empirically obtained response

vectors is also possible.

Evaluation of the Bayesian Procedures

To evaluate the procedures, one merely correlates the 6
(10)

against

the e for the randomly sampled "cases" or simulated individuals for a

particular termination criterion. Underlying ability, e , is the perfect

criterion for the computation of this validity coefficient.
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Regarding valid evaluation, the specifications for the item parameters

of an item bank are. critical. For example, high item discriminatory powers

and a rectangular distribution of item difficulties have in other tailored

testing contexts led to quite satisfactory validities. Here we will consider

three item banks, two of which are idealized while the third is taken from an

empirical source.

Item Bank A consisted of 100 items. The item Jiscriminatory powers,

ai , equalled 1.6 for all i, i = 1, 2, ... n or 100, while 20 items each had

item difficulties, bi, at one of five levels, i.e., -1.50, -.75, .00, .75,

and 1.50, respectively. The probability of chance success on the items, ci ,

was .2 for all items.

Item Bank B consisted of 105 items. Again, the item discriminatory

powers, a. , equalled 1.6 for all items, while 5 items each had item diffi-

culties at one of twenty-one levels, i.e., -2.50, -2.25, -2.00 ... 2.50,

respectively.Theprobabilityofchancesuccessontheitems,c.,was,

again, .2 for all items.

The item parameters for Item Bank C were taken from estimates provided

by Lord (1968) for the Verbal Scholastic Achievement Test (VSAT). The

estimation sample was comprised of 2,862 cases. The interested reader will

find the specifications for this item bank enumerated in that source.

With these specifications, simulated response vectors were generated,

as previously outlined, for samples of 50 each for Item Banks A and B. For

Item Bank C, 100 "cases" were generated. Termination criteria for Item Banks

A and B were set at .32 and .25 as maximum allowable values for a
(p)

. Under

the te-rulinatIonrules-, vary-across simulatedexamineea, _For Item

11

Bank C, the compound termination criterion was p = 30 or 3
(P)

equal to or

13

less than a maximum value of .25.
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Results

In order to illustrate what an individual evaluation sequence would look

like, Table 2 is provided. The data are for a simulated "case" who was eval-

uated with Item Bank A. At the beginning of evaluation, nothing was assumed

known about Examinee 1046; therefore, our prior information admits to this

state of ignorance by setting O\
(0)

and a
(o)

to .00 and 1.00, respectively.

In other words, the mean is, then, the most probable value or the best esti-

mate of 0 while the standard error of the estimate corresponds to the

standard deviation of the prior distribution. Given this initial information,

Item 3 from Item Bank A was found via equations (15) to be the most appropriate

for the first presentation. The examinee answered Item 3 incorrectly, so that

equations (18) and (19) were used to calculate the specific values of -.6766

and .7363, respectively for 6\(1) and a(1) . Using these estimates, equations

(15) were evaluated for the (n - 1) or remaining 99 items. Item 2 from Item

Bank A was, thereby, identified as the most appropriate item for the second

presentation. The examinee answered Item 2 correctly; consequently, equations

(16) and (17) were used to calculate 0(2) and 3(2) , or -.3904 and .6694,

specifically and respectively. The cyclic processing continues, as indicated

earlier, until a termination criterion is reached. At a termination criterion

of (3(p) less than or equal to .32, 0(10) or -.9937 was the Bayesian esti-

mate of ability for Examinee 1046. Given the termination criterion of a
(p)

less than or equal to .25,
6(14)

or -1.2104 was the Bayesian estimate of

ability. Now the "true" value of 0 was -1.2180 for the particular examinee.

Notice that if we establish confidence intervals for 0 with an approximate

probability ox we have:

?rob [-.99 - (1.96)(32) < e < -.99 + (1.96)(.32)] == .95

1Q.



Table 2

An Example of an Individual Evaluation Sequence by

Bayesian Estimation Procedures

Examinee Number 1046

Prior Information

g(0)
.00

c(0) = 1.00

13

Item

Presentation

Item Bank

(p) Number

Item

'Response

Ability

Estimate [6\ ]

(P)

Standard Error

of Estimate [3 ]

(P)

1 3 0 (wrong) -.6766 .7363

2 2 1 (right) -.3904 .6694

3 7 1 (right) -.1902 .6079

4 8 0 (wrong) -.4718 .5140

5 12 1 (right) -.3330 .4789

6 17 0 (wrong) -.6717 .4085

7 22 1 (right) -.5597 .3895

8 27 0 (wrong) -.7594 .3500

9 32 0 (wrong) -.8944 .3224

10 37 0 (wrong) -.9937 .3018

11 1 0 (wrong) -1.1660 .2791

12 6 1 (right) -1.1230 .2714

13 11 0 (wrong) -1.2506 .2549

14 16 1 (right) -1.2104 .2489

15
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or

Prob [-1.62 < 0 < - .36] .95

and

Prob [-1.21 - (1.96)(.25) < 0 < - 1.21 (1.96)(.25)] == .95

or

Prob [-1.70 < 0 < - .72] 1= .95

where 0 is well within the indicated intervals. The probabilities are

approximate since the a,
)

are unbiased only when p is large.0
We now turn to results in samples where the individualized testing

delineated above was applied to each "case." Validity coefficients for the

three item banks are presented in Table 3. For example, using Item Bank A

with a termination criterion of 3(p) equal to or less than .32, the validity

coefficient for a sample size of 50 was .928. In attaining the termination

criterion, the minimum, average, and maximum number of items used in evalua-

tion were 8, 12.2, and 16, respectively. Analogous interpretations apply to

the remaining rows of data in the table. In the simulation of the tailoring

of the VSAT, Item Bank C, it was found that the validity coefficient for the

80-item raw total score was .949, which was the same as that reported in Table

3 for tailored tests of an average length of 27.6 items. On the average, 65%

of the original test may be considered unnecessary for examinees to take, since

comparable validity in Bayesian tailored tests can be obtained with this sub-

stantial reduction in test length or items used.

Discussion

parlance of the faotor_analyst, the validity oneffinient used here

is similar to a factor structure coefficient or the correlation between the

variable and the factor of ability. In the present context, the novel usage



Table 3

Validity Coefficients and Pertinent Data for Bayesian

Tailored Testing with Three Item Banks

Item Termination

Bank Criterion

a(p) < .32
A

a(p) < .25

6(p) < .32
B

6
(p

)

l

< .25

C

a(p) < .25

or p = 30

15

Number of Items

Minimum Average Maximum

Validity

Coefficient

Sample

Size

3 12.2 16 .928 50

14 18.4 22 .96 50

8 11.5 14 .927 5o

12 17.4 21 .948 50

14 27.6 30 .949 100
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of the word "variable" shou'.d not obscure the direct analogy. However, there

is an important methodological distinction to be made. The logistic model

allows one to avoid difficulty factors. For example, if we were to intercorre-

late the items from any of the item banks - -A, B, or C--the correlation matrix

would form a simplex. In a Simplex, the magnitudes of the correlations between

/increase'
pairs of it s

\decrease
as the disparities in the item difficulties

( increase

decrease)
. In factor analyzing a matrix of this nature, a plurality of

factors is possible even though the basic source of the data is explicitly

unidimensional. The model, then, circumvents a problem in factor analysis

that has been viewed by several investigators (Ferguson, 1941; Gibson, 1960;

Green, 1952) with some concern.

If the logistic model fits empirical data, the inferences made from

simulation studies are applicable to those empirical situations where the

constituent items of an item bank correspond in terms of their parameters to

those that have been simulated. As seen above, one may fix ability by choosing

a person at random or by selecting a gaussian random number. As far as the

model is concerned, the operations are identical since underlying ability is

assumed to be N(0,1). Thereafter, the model males explicit the probability

distributions from which one samples the response vectors for items of speci-

fied parameters. The upshot is that, if the model obtains for empirical data,

simulated random samples do not differ in any critical way from empirical

random samples.

Obviously, one can assess model capabilities independent of the

determination of the fit of the model to empirical data. The Question of

model capabilities is, therefore, the more basic since, if the model does not

show sufficient promise, tests of empirical fit are superfluous. Given

18
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sufficient promise, the question of empirical fit, then, becomes important.

Methods of assessing the fit of the model to empirical data are discussed by

Birnbaum (1968). While the results of this investigation would underscore

the importance of the methods, no attempt will be made here to examine them.

Now Item Banks A and B were presentee as idealized examples; but, if

one has the specific objective of tailoring tests, reasonably similar banks

might be achieved in practice. On the other hand, Item Bank C has (admitting

to minimal errors in estimation due to the large sample size) its counterpart

in the form of an extant conventional test, the VSAT. The findings with

regard to Item Bank C indicated that if the VSAT were used in Bayesian

tailored testing applications, 65% of the test would be unnecessary for the

average examinee to take. However, if we look at the results for Item Banks

A and B, an average of 27.6 items in relation to 18.4 and 17.4 items for

evaluation with comparable validity shows that there is room for improvement.

The improvement would be realized by designing item banks for the specific

purpose of tailored testing.

The VSAT was designed for the specific purpose of univariate selection

where the selection ratio is low. In other words, the test was constructed to

minimize the errors of measurement in the range of high scores. To accomplish

this purpose, items of higher than average difficulty were more frequently

selected to comprise the test. In a tailored testing context, however, it is

advisable to have a distribution of item difficulties which extends uniformly

through the full range of difficulty (Urry, 1970). The specific purpose of

tailored testing, then, is best served by a different item selection technique

than that used in the construction of the VSAT.



18

Notice, further, that we have not utilized the Bayesian estimation

procedures to the fullest extent. In most testing applications we begin

under the tacit assumption that we know nothing about the examinees. In the

majority of cases, this state of ignorance need not be assumed. Further
A

assessments of model capabilities in regard to zayesabm csJuimation procedures

should explore this attractive feature. The possibility exists that evalua-

tion sequences could be further reduced in terms of average number of items

while a satisfactory level of validity is maintained.
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Appendix

The order and preparation of the input specific to the computer programs

are described here. Also, source listings are provided for both programs.

Case I, where chance success is not effective, corresponds to program BAZES2.

The particular designation is used to indicate that the items used in the

Bayesian estimation of ability have but two parameters since the ci are null.

Similarly, program BAZES3 corresponds to Case II where chance success on the

items is effective or the c. are non-null.
1

The author wishes to acknowledge the able assistance of Jerry W. Edwards

of the Bureau of Testing. is programming of FUNCTION ERF, which is used in

both programs, was of considerable aid.
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Order and Preparation of Cards Specific to the Programs

(1) Title Card (Format #200)

TITLE Col. 1-70 Any alphanumeric title for the identification

of individual evaluation sequences.

NVF Col. 73-76 Number of variable fnrmat cards.

Maximum: 5

NCASES Col. 77-80 Number of individuals to be evaluated.

(2) Problem Card (Format #74)

NAME Col. 1-40 Name of the item bank.

ITERM Col. 61i. Specification of termination of criteria.

Indicate:

1 If the evaluation sequences are to be

terminated after a given number of item

presentations.

2 If the evaluation sequences are to be

terminated after an allowable value of the

standard error of estimate has been attained.

3 If either of the conditions stated for

1 or 2 obtain.

IUSE Col. 67-68 Maximum number of items to be presented.

Must be specified if Col. 64 contains a 1 or 3.

Cannot exceed the number of items in the bank.

EPSILON Col. 69-76 Maximum allowable value for the standard error of

estimate. Use F8.1.. Must be specified if Col. 64

contains a 2 or 3. Suggested range: .4 to .2.

NITEMS Col. 77-80 Number of items in the item bank. Maximum: 200.
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(3) Item Parameter Cards (Format 01)

(a) Item discriminatory powers (ai)

Ten per card:

Col. 1-8 a
1

F8.4

Col. 9-16 a
2

F8.4

Col. 73-80 a10 F8.4

Repeat on the required number of cards. Maximum: 200 parameters

or 20 cards.

(b) Item difficulties (bi)

Ten per card:

Col. 1-8 b
1

F8.4

Col. 9-16 b
2

F8.4

Col. 73-80 b10 F8.4

Repeat on the required number of cards. Maximum: 200 parameters

or 20 cards.
/-

Necessary only for program BAZES3

(c) Probability of chance success on the items (ci)

Ten per card:

Col. 1-8 cl F8.4

Col. 9-16 c
2

F8.4

Col. 73-80 c10 F8.4

Repeat on the required number of cards. Maximum: 200 parameters

or 20 cards.

1

9e1



(4) Variable Format Card(s)

A maximum of five cards can be used to describe the data. Use columns

1-80. Punch a regular FORTRAN format statement omitting the word

"FORMAT." Begin with "(14," to accommodate an individual identifica-

tion number, and use "Il" to input each binary response.

(5) ,Input Data (Variable Format)

The input data consist of an identification number and binary

responses for each case as described on the variable format card(s).



PROGRAM BAZES2(INPUT, OUTPUT, TAPF5=INPUT, TAPE6=OUTPUT)
DIMENSION A(200)0(200),U(2601,ALPHA(200)t1R(200),IEL/M(200) t

X ISUB(200),R(200),ER(200),FMT(100),TITLE(7),NAME(4)
PI=3.141 592653589793
Cl = 100/SORT(PI)
C2 = 21,0/SORT(PI)
C3 = SORT(2s0/PI)
SIGN = 1.0

200 READ(5,201) (TITLE(1)s1=1.7),NVF,NCASES
201 FORMAT (7A10,2X/214)

1F(E0F9r.,) 300/301
301 WRITE(6,70)
70 FORMAT(1H11//////////////)

WRITE(6171)
71 FORMAT(IHG,47Xt35HBAYESIAN ABILITY ESTIMATION PROGRAM/54X,

X23HTWO ITEM PARAMETER CASE//////)
WRITE(6,72)

72 FORMAT(1FW156X,17HBUREAU OF TESTING /////)
WRITE(6,73)

73 FORMAT(1FW,52X,24HUNIVERSITY OF WASHINGTON ////////)
READ(5974)NAME,ITFRM.IUSE,EP5ILON,NITEMS

74 FORMAT(4,A10,22XtI2,I4,F844,14)
WRITE(6,75)NAME,NITEMS

75 FORMAT(1H(',25X,30HITEM BANK t5X14A10////26X:12HTOTAL ITEMS ,4Xt
XI4////)
IF(/TERM-2) 76077078

76 EPSILON=.0
GO TO 79

77 TUSF=NITEMS
78 CONTINUE
79 WRITE(6t80) IUSEtEPSILON
80 FORMAT(IHU$25Z,20HTERMINATION CRITERIA//30X,16HNUMBER OF ITEMS s

XI1O / /30X,15HSTANDARD ERROR t3X,F10.4)
READ (5,31) (A(I)tI=1,NITEMS)
READ (51.31) (6(I),I=11NITEMS)

31 FORMAT(10F8G4)
WRITE(6084)

84 FORMAT(1H1)
CALL VARFMT (NVF,FMT)
NK = 0

100 NK = NK 1

IPRES = 0

IF (NKNCASFS) 101,101,200
101 WRITE (6,28) (TITLE(I).,I=10)
28 FORMAT(1H1,30X17A10////)

READ(5,FMT) ID.t(IR(I)tI=1,NITEMS)
ABLE=OtO
VAR=1.0
SEE=SORT(VAR)
WRITE(6181) ID1ABLEsVAR

81 FORMAT(1W2010X,15HEXAMINEE NUMBER,I10//16Xt15HRRIOR ESTIMATES//21X
X,8HABILITY 0F10.5/21X,9HVARIANCE ,F9.5//)
WRITE(6982)

82 FORMAT(1H0t15Xs4HITEM,24X,9HITEM (3ANK,24X,7HABILITY,22Xt
X14HSTANDARD ERROR/I2X,12HPRESENTATIONs21X,6HNUMBER,26X,8HESTIMATE,
X22X,11HOF ESTIMATE//)

(1)



DO 20 1=19NITEMS
20 IELIM(I) = 0

50 NLEFT 0

IF(IPRES.GE.IUSE) GO TO 100
IFIEPSILON.GE.SFFI GO TO 100
DO 13 I19NITEMS
IF (IIELIM(I)) 12913912

12 NLEFT = NLEFT + 1

ISUB(NLEFT) = I

13 CONTINUE
IF (NLEFT) 100910091 4

14 DO 10 I=19NLEFT
-ITEM = ISUB(I)
R(1) = loC/(A(ITEM)*A(ITEM)) + VAR
D(I) = (B(ITEM)ABLE)/SORT(2.0*R(I))
ER(I)=ERF(D(I))

10 ALPHA(I) = R(I)*EXP(2.0*D(I)*0(I))*(140ER(I)*ER(I)1
RMIN = ALPHA(1)
JSUB = 1

DO 1 J-1 ,NLEFT
IFtRMIN ALPHA(J)) 19192
RMIN = ALPHA(J)
JSUB = J

1 CONTINUE
ITEM = ISUB(JSUB)
RITEM = R(JSUB)
DITEM = D(JSUB)
IELIM (ITEM) = ITEM
1PRES = IPRES + 1

TEM - DITEM*DITEM
Fl = C2(1.0/(1.0+(1.0/(A(ITEM)*A(ITEM))*(1e0/VAR))))
IF(IR(ITEM)) 3,394

3 PER = 1.0+ER(JSUB)
ABLE = ABLEC3*(VAR/SORT(RITEM))*EXP(SIGN*TEM)/PER
F2 = 1.C/((EXP(TEM)PER)**2)
F3 = C1 +DITEM*EXPITEM) *PER
GO TO 5

4 SER = 1.0ER(JSUB)
ABLE = ABLE+C3*(VAR/SORT(RITEM))*EXP(SIGN*TEM)/SER
F2 = 100/((EXP(TEM)*SER)2)
F3 = ClDITEM*EXP(TEM)*SER

5 VAR = VAR *()..0F1 *F2*F3)
SEE=SORTIVAR)
WITE(6983)IPRES9TTEM9ABLE9SEE

83 FORMAT(1H0915X914926X914926X9F8o4925X,F864)
GO TO 5(1

300 STOP
END
FUNCTION ERF(X)
ERROR FUNCTION FOR) 0 I X 3.95, MACCLAURIN SERIES
FOR X * 109 ERF(X)=1.0
ACCURACY PARAMETER IS .1E-10
ERF=0.0$1F(X.E.O.0.0)RETURNSES=SIGN(1.0,X)$XX=E=Y=ABS(X)$J=1$IF(Y.L
XT.3.96)GOTO1SERF=100$RETURN
1 S=F=1$D021=1960$S=S*(-1)1F=F*1$J=J+2$XX=XX*Y*Y
T=XX/(J*F)ILIF(ToLT..1E-10)GOT03$E=E+T*S

(4)



2 CONTINUE
3 ERF=ABS(E)*2.0/1.77245385090552 ESSRETURNSEND
SUBROUTINE VARFMT(NVF,FMT)

C NVF= NUMBER OF VARIABLE FORMAT CARDS
DIMENSION FMT(1)
NVF=NVF*2°
READ(5,47J) (FMT(I),I=19NVF)

470 FORMAT(20A4)
WRITE(6,471)(FMT(I),I=1,NVF)

471 FORMAT(1H0,7H FORMAT/(10X920A4))
RETURN
END

13)



PROGRAM DAZES3(INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
DIMENSION A(200),B(200),C(200),D(200),BETA(200),IR(200)9

X ISUB(200),R(200)9ER(200)9FMT(100),TITLE(7)9NAME(4),
X IELIM(200)
P1=3,141592653589793
Cl = 1.0/SORT(PI)
C2 = 200/SORT(PI)
C3 = SQRT(2.0 /PI)
C4 = 1.0/SORT(2s0*PI)
SIGN = 100

200 READ(5,201) (TITLE(I),I=197),NVF,NCASE5
201 FORMAT (7A1092X,214)

IF(E0F95) 300,301
301 WRITE(6,70)
70 FORMAT(1H11//////////////)

WRITE(6,71)
71 FORMAT(1H0r47XI35HBAYESIAN ABILITY ESTIMATION PROGRAM/53X9

X25HTHREE ITEM PARAMETER CASE//////)
WRITE(69721

72. FORMAT(1H0956X,17HBUREAU OF TESTING /////)
WRITE(6973)

73 FORMAT(111:!,52X,24HUNIVERSITY OF WASHINGTON ////////)
READ(5974)NAME9ITERM9IUSEsEPSILON,NITEMS

74 FORMAT(4A10922X,129149F8.4114)
WRITE(6975)NAME,NITEMS

75 FORMAT(1H0925Xs1OHITEM BANK ,5X,4A10 / / / /26X,12HTOTAL ITEMS ,4X9
XI4////)
IF(ITERM-2) 76.77978

76 EPSILON:x.1)
GO TO 79

77 IUSE=NITEMS
78 CONTINUE
79 WRITE(6,8U) IUSE,EPSILON
80 FORMAT(1HJ925X920HT:-.RMINATION CRITERIA//30X916HNUMBER OF ITEMS

XI10//30X115HSTANDARD ERROR 93X9F10.4)
READ (5931) (A(I),I=1,NITEMS)
READ (5,31) (B(I),I=I9NITEMS)
READ (5931) (C(I)91=19NITEMS)

31 FORMAT(10F844)
WRITE(6984)

84 FORMAT(1H1)
CALL VARFMT (NVF,FMT)
NK = 0

100 NJ( = NK 4. 1

IPRES = 0
IF (NKNCASES) 101,101,200

101 WRITE (6,28) (TITLE(I),I=1,7)
28 FORMAT(1H1,30X97A10////)

READ(5,FMT) ID9(IR(I)9I=19NITEMS)
ABLE=0.0
VAR=10
SEE=SQRT(VAR)
WRITE(6981) ID,ABLE,VAR

81 FORMAT(1Hus10X,15HEXAMINEE NUMBER,110//16X,15HPRIOR ESTIMATES//21X
X98HABILITY ,F10e5/21XP9HVARIANCE 9F9.5//)
WRITE(6,82) (4)



FORMAT(1W),15X,4HITEM024X0HITEM BANK,24)(17HABILITY,22X,
X14HSTANDARD ERROR/12X,12HPRESENTATI0N,21X16HNUM6ER,26X,8HESTIMATE,
X22X*11HOF ESTIMATE//)
00 20 I=1,N/TEMS
IELIM(I) = 0
NLEFT = 0
IF(IPRES.GE.IUSE) GO TO 100
IF(EPSILON.OE.SEE) GO TO 100
DO 13 I=1,NITEMS
IF (IIELIM(I)) 12,13112
NLEFT = NLEFT + 1

ISUB(NLEFT) = I

CONTINUE
IF(NLEFT) 100,100,14
DO 10 I=1/NLEFT
ITEM = ISUB(I)
R(I) = 1.0/(A(ITEM)*A(ITEM)) + VAR
D(I) = (B(ITEM)ABLE)/SORT(2.0*R(I))
ER(I)=ERF(D(I))
SER = 1.0ER(I)
CITEM = C(ITEM)
C5 = 1.0-CITEM
Fl = 1.0-.-(SER/2.0)
F2 =(CITEM+(C5/2.0)*SER)*EXP(2.0*D(I)*D(I))
BETA(I) = (140/C5)*(R(1)/VAR)*Fl*F2*(1.0/(1.0+CITEM*F1)1
RMIN = BETA(1)
JSUB = 1

DO 1 J=1,NLEFT
IF(RMIN BETA(J)) 1,1,2
RMIN = BETA(J)
JSUB = J
CONTINUE
ITEM = ISUB(JSUB)
RITEM = R(JSUB)
DITEM = D(JSUB)
IELIM (ITEM) = ITEM
IPRES = IPRES 1

TEM = DITEM'DITEM
IF(IR(ITEM)) 393,4
PER = 1a0+ER(JSUB)
ABLE = ABLEC3*(VAR/SORT(RITEM))*EXP(SIGN*TEM)/PER
Fl = C2*(1.0/(1.0+(1.0/(A(ITEM)*A(ITEM))*(1.0/VAR))))
F2 = 1.0/((EXP(TEM)*PER)**2)
F3 = Cl+DITEM*EXP(TEM)*PER
GO TO 5
SER = 1o0ER(JSUB)
CITEM = C(ITEM)
C5 = 1.0 CITEM
F4 = (100/(CITEM+1C5/2.01*SER))
ABLE=ABLE+C4*C5*F4*EXP(SIGN*TEM)*(VAR/SORT(RITEM))
Fl = C5*C1 *F4
F2 = (VAR/RITEM)*EXP(2.0*SIGN*TEM)/SER
F3 = ((C1DITEM*EXP(TEM)*SER)(CITEM*C1 *F4))

5 VAR = VAR *(1.0F1 *F2*F3)
SEE=SORT(VAR)
WRITE(6183)IPRES,ITEM,ABLEsSEE

(5)



. 83 FORMAT(1HU415X914,26X,I4926X,F8a4,25X9F8.4)
GO TO 51

300 STOP
END'
FUNCTION ERF(X)
ERROR FUNCTION FOR) 0 I X 3.95, MACCLAURIN SERIES
FOR X I 10, ERF(X) =100
ACCURACY PARAMETER IS 01E-10
ERF=0.0$1F(X.EC).0.°)RETURNSES=SIGN(1.09X)SXX=E=Y=ABS(X)SJ=1SIF(YoL
XT.3.96)GOTO1SERF=1.0$RETURN
1 S=F=1$002I=1,60$S=5 *(-1)$F=F*I$J=J1-2$XX=XX*Y*Y
T=XX/(J*F)SIF(ToLT.*1E-10)GOTO3SE=E+T*S

2 CONTINUE
3 ERF=ABS(E)*2011.77245385090552*ESSRETURN$END
SUBROUTINE VARFMT(NVF,FMT)

C NVF= NUMBER OF VARIABLE FORMAT CARDS
DIMENSION FMT(1)
NVF=NVF*20
READ(51470) (FMT(I),I=1tNVF)

470 FORMATI20A4)
WRITE(6,471)(FMT(I),I= 1,NVF)

471 FORMAT(1HO,7H FORMAT/(10X920A4))
RETURN
END

3 1
(C)


